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Human pathologies such as vascular malformations, hemorrhagic stroke, and edema have been associated
with defects in the organization of endothelial cell junctions. Understanding the molecular basis of these
diseases requires different integrated approaches which include basic cell biology, clinical studies, and
studies in animal models such as mice and zebrafish. In this review we discuss recent findings derived
from these approaches and their possible integration in a common picture.
A variety of human vascular pathologies are due to or exacer-

bated by altered control of endothelial permeability. Defects in

endothelial permeability can lead to edema and increase in inter-

stitial pressure, which in turn induces compression and altered

tissue perfusion. A typical example is ischemic stroke, where

edema around the ischemic area extends brain damage. Inflam-

mation is also associated with increases in vascular perme-

ability, which favors leukocyte diapedesis through the vessel

wall but may create pain and swelling. Edema is usually a revers-

ible condition and the control of vascular permeability may be

restored once the triggering cause is removed.

However, there are extreme conditions where the integrity of

the endothelial monolayer is severely affected, cell-to-cell junc-

tions are disrupted, and endothelial cells detach from the vessel

wall, creating areas of vascular damage and possibly micro-

thrombi. Altered permeability may also be accompanied by

vascular fragility with the frank rupture of the vessels and forma-

tion of hemorrhages. This is a frequent condition in tumors where

the newly forming vasculature is usually permeable and fragile

(Carmeliet and Jain, 2000). In other more rare cases though,

increased vascular fragility may be due to congenital alterations

in vascular development (Brouillard and Vikkula, 2003, 2007).

Molecular cloning of the defective genes from human disorders

and gene inactivation approaches in model organisms such as

mouse and fish have resulted in the identification of many genes

involved in vascular remodeling and maintenance of vascular

integrity. Deletion or reduced expression of these genes may

result in early lethality due to diffuse hemorrhages in the embryo.

However, in other cases the vascular defect may remain silent

during development but manifest in the adult when the vessels

are exposed to a triggering condition.

Defects in vascular permeability can have a number of

different causes. Vascular permeability is mediated by at least

two broad mechanisms, called the paracellular and transcellular

pathways. The first is controlled by the dynamic opening and

closing of endothelial junctions (Dejana et al., 2008), while the
second includes vesicular transport systems, fenestrae, and

biochemical transporters (Dvorak et al., 1996). Vascular fragility

can be due to an altered organization of intercellular junctions

and/or defective interaction of endothelial cells with pericytes

or matrix proteins. The focus of this review is primarily on the

role of intercellular junctions in the control of vascular perme-

ability and integrity. We discuss current knowledge regarding

the molecular and functional organization of adherens (AJ) and

tight junctions (TJ), and attempt to show the correlations

between experimental studies and related human pathologies.

The Molecular Organization of Endothelial Cell-to-Cell
Junctions
The detailed architecture of endothelial cell-cell junctions has

been described in detail in several other recent reviews (Bazzoni

and Dejana, 2004; Gonzalez-Mariscal et al., 2008; Wallez and

Huber, 2008) In Figure 1 we show a simplified version of some

of the most important molecules involved in endothelial junction

organization (Bazzoni and Dejana, 2004; Vestweber, 2008;

Weber et al., 2007). Endothelial cells have at least two special-

ized adhesive junctional regions that are comparable to adhe-

rens junctions (AJs) and tight junctions (TJs) found in epithelial

cells. In contrast to epithelial cells, however, endothelial cells

lack typical desmosomes. Gap junctions are also present in

the endothelium and play an important role in different endothe-

lial functions but, as far as we know, are not involved in control of

endothelial permeability and, for simplicity, will not be further

considered in this review.

AJs and TJs have different functions. AJs initiate cell-to-cell

contacts and promote their maturation and maintenance. TJs

regulate the passage of ions and solutes through the paracellular

route (Bazzoni and Dejana, 2004; Gonzalez-Mariscal et al.,

2008). TJs may also act as a membrane ‘‘fence’’ to limit the

free movement of lipids and proteins between the apical and

the basolateral cell surfaces. Most importantly, both structures

can transfer intracellular signals that control many endothelial
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Figure 1. Schematic Representation of
Tight Junctions and Adherens Junctions
in Endothelial Cells
In endothelial cells, adhesion at tight junctions is
mediated by claudins, occludin, members of the
JAM family, and ESAM. The cytoplasmic compo-
nents of tight junctions are ZO proteins, cingulin,
ZONAB, and others. At adherens junctions, adhe-
sion is promoted by cadherins (VE-cadherin and
N-cadherin) which directly bind to p120, b-cate-
nin, and plakoglobin. Nectins and their intracellular
partner afadin/AF-6 participate in the organization
of both tight and adherens junctions (Takai et al.,
2008). A large set of actin binding proteins have
been found to be associated to adherens junctions
such as a-catenin, vinculin, a-actinin, eplin,
and others. In addition, phosphatases (DEP-1,
VE-PTP, PTPm, SHP2, etc.) and kinases (src, csk,
and others) are directly or indirectly associated
to adherens junction components. Growth factor
receptors: VEGF receptor 2 (also called flk-1 or
KDR) and TGFb receptor complex could bind to
VE-cadherin complex. This interaction modulates
their signaling properties. More details can be
found in the text and, for review, in the following:
Bazzoni and Dejana, 2004; Dejana, 2004; Engel-
hardt, 2003; Furuse and Tsukita, 2006; Gonzalez-
Mariscal et al., 2008; Johnson-Leger and Imhof,
2003; Matter and Balda, 2003; Van Itallie and
Anderson, 2006; Wallez and Huber, 2008; and
Vestweber, 2008.
cell functions. The organization of intercellular junctions through

the clustering of adhesion and signaling proteins is therefore an

important process through which the cells sense their position,

control growth and apoptosis, and form tubular structures (see

below) (Matter and Balda, 2003; Bazzoni and Dejana, 2004;

Dejana, 2004; Gonzalez-Mariscal et al., 2008).

Although the molecular components of TJs and AJs are

different, they do have common features (Figure 1). In both types

of junction, adhesion is mediated by transmembrane proteins

that promote homophilic interactions and form a pericellular

zipper-like structure along the cell border through their lateral

aggregation in trans and cis (for review Bazzoni and Dejana,

2004; Gonzalez-Mariscal et al., 2008; Wallez and Huber, 2008)

Endothelial cells express cell-type-specific transmembrane

adhesion proteins such as VE-cadherin at AJs and claudin-5 at

TJs. The restricted cell specificity of these components indicates

that they might be needed for selective cell-cell recognition and/

or specific functional properties of endothelial cells. Through

their cytoplasmic tails, adhesion proteins of both types of junc-

tions bind to cytoskeletal and signaling proteins that promote

anchoring of junctions to actin microfilaments and transfer of

intracellular signals to the inside of the cell. Cytoskeletal associ-

ation is required for stabilization of the junctions, but also for the

dynamic regulation of junction opening and closing. The interac-

tion of junctional adhesion proteins with the actin cytoskeleton is

also relevant in the maintenance of cell shape and polarity

(Hartsock and Nelson, 2008). Many reports support the concept

that AJs and TJs are interconnected and that AJs influence

TJ organization (see below). AJs are formed at early stages of

intercellular contacts and are followed by TJ organization.

Some TJ components such as ZO-1 are found in AJs at early

stages of junction formation and concentrate in TJs only subse-

quently when junctions are stabilized. Interestingly, however,
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AJs are required for TJ assembly but are dispensable for

TJ maintenance in epithelial cells (Capaldo and Macara, 2007).

As described in the legend to Figure 1, the core components of

TJs that promote cell-to-cell adhesion are members of the clau-

din family (Van Itallie and Anderson, 2006; Furuse and Tsukita,

2006). The claudin family has more than 20 members, only

a few of which are expressed by endothelial cells. Claudin-5 is

rather ubiquitous along the vascular tree. Other non-cell-specific

claudins are also found in endothelial cells and their combination

varies to respond to the different needs of the perfused organ. A

variety of additional adhesion transmembrane proteins can also

be found at TJs (JAMs, ESAM, occludin, etc.) and these

contribute to intercellular adhesion in different ways (see below)

(Wallez and Huber, 2008). Multiple intracellular partners of

TJ adhesive proteins have been described. Among the best

characterized are the members of the ZO family (ZO1 and 2 in

the endothelium), a closely related subgroup of the membrane

associated guanylate kinase (MAGUK) family that localize at

TJs in most tissues including the endothelium. Other intracellular

TJ proteins include signaling and actin-binding proteins. At

AJs, adhesion is mediated by members of the cadherin family.

VE-cadherin is expressed in essentially all types of vessels.

N-cadherin is also present in the endothelium, but is frequently

found localizing to non-AJ cellular structures both in vitro and

in vivo. VE- and N-cadherins both bind catenins, in particular

p120, b-catenin, and plakoglobin. b-catenin also binds a-cate-

nin, which when released from junctions into the cytosol

promotes actin bundling. As for TJs, many other actin-binding

proteins and several kinases and phosphatases are also found

at AJs (Wallez and Huber, 2008; Bazzoni and Dejana, 2004;

Vestweber, 2008).

The organization of TJs and AJs varies along the vascular tree

depending on the functional needs of the vessels. For instance,
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TJs are particularly abundant and complex in the brain microcir-

culation where there is a need to strictly control permeability,

whereas the junctions are relatively poorly organized in postca-

pillary venules where exchange between blood and tissues is

quite dynamic (Engelhardt, 2003; Dejana, 2004). An example of

highly specialized junctions is found in peripheral lymphatic

vessels, where intercellular junctions between lymphatic endo-

thelial cells control entry of fluid and cells that drain from

surrounding tissues. These lymphatic capillaries possess highly

specialized junctions that, although formed by the same molec-

ular components as blood vessels, have a strikingly different

morphology. Endothelial borders have discontinuous button-

like junctions with intermingled flaps resembling valve-like

structures (Baluk et al., 2007). At the molecular level, AJ and

TJ proteins are concentrated at the buttons, leaving the flaps

free to open without disrupting the overall junctional organiza-

tion. The larger, more proximal collecting lymphatic vessels

have continuous zipper-like junctions resembling those in the

endothelium of blood vessels.

The Dynamic Regulation of Vascular Permeability
An important emerging concept is that intercellular junctions are

dynamic structures undergoing continuous remodeling not only

during morphogenesis in the embryo or upon exposure of cells to

agents that increase permeability, but also in confluent and

resting cells. Continuous recycling of adhesive proteins and

signaling partners may occur at AJs and also at TJs. Cadherins,

and in particular VE-cadherin, show a flow-like movement in

a basal to apical direction which is accompanied by actin reorga-

nization (Kametani and Takeichi, 2007). Furthermore, recent data

have shown that in Drosophila E-cadherin forms stable adhesion

foci that undergo continuous, actin-controlled, mobility along

intercellular contacts (Cavey et al., 2008). All of this suggests

that even apparently stable AJs are dynamic structures able to

continuously adapt to tissue requirements. The endothelium is

continuously exposed to hemodynamic stimuli such as shear

stress or the rhythmic changes in pressure due to heart beating,

as well as vessel contraction and dilation. Junctions and the

cell cytoskeleton need to continuously reshape to allow the

endothelial monolayer to adapt to the dynamic conditions to

which it is exposed. Junctional proteins such as VE-cadherin

may also serve as flow sensors and transfer intracellular stimuli

which help the cell to react to changes in flow conditions (Tzima

et al., 2005).

TJs and Permeability Control

As discussed above, the role of junctions in endothelial and

epithelial cell permeability is now well established, and these

are clearly highly dynamic structures regulated in response to

environmental conditions. A number of recent studies have

focused on the importance of claudins in TJ formation and main-

tenance (Furuse and Tsukita, 2006; Van Itallie and Anderson,

2006). Although inactivation of claudin-5 gene in mice did not

morphologically alter the vascular network or the ultrastructural

appearance of TJs, claudin-5-deficient pups died within 10 hr

of birth due to a size-selective loosening of the blood-brain

barrier against molecules less than 800 Da. Other claudins may

form the TJ strands in claudin-5 mutants and maintain the barrier

against larger molecules (Furuse and Tsukita, 2006). Claudin-3 is

likely responsible for the complex organization of TJ in brain
vessels. Claudin-3 and -5 therefore appear to act in concert to

form the tightly organized strand network at TJs of the brain

microcirculation. Gene inactivation of claudin-1, which is also

expressed in endothelial cells, did not result in a vascular pheno-

type during embryonic development, suggesting that it plays

a lesser role in TJ in endothelium compared to claudin-5 and

-3 (Gonzalez-Mariscal et al., 2008). Occludin is another trans-

membrane protein structurally similar to claudins, although not

strongly homologous at the sequence level, which becomes

incorporated into claudin-based junctional strands. Occludin is

present in endothelial cells and in particular in the brain (Hirase

et al., 1997). However, no effects on vascular morphology or

blood-brain barrier permeability have been reported in mice

lacking occludin.

Junction adhesion molecule-A (JAM-A) and its related family

members JAM-B, JAM-C, endothelial cell-selective adhesion

molecule (ESAM), and cocksackie- and adeno-virus receptor

(CAR) are transmembrane glycoproteins that associate with

TJ strands but are not part of the strands per se (Weber et al.,

2007). All JAM family members and ESAM are expressed in

endothelial cells, but inactivation of their respective genes in

mice does not cause any defect in the development of the

vascular system in the embryo (Weber et al., 2007; Wegmann

et al., 2006). In adult mice, all these molecules play an important

role in modulating leukocyte diapedesis through endothelial

cells. Unlike other junctional proteins, JAM-C increases endo-

thelial permeability when expressed at the endothelial cell

surface, suggesting it may play a role in promoting and/or orga-

nizing junction formation (Orlova et al., 2006). This activity is

mediated by changes in actin organization and VE-cadherin

activity. Several kinases and phosphatases have been shown

to modulate TJ protein phosphorylation and endothelial perme-

ability in vitro and in some conditions also in vivo.

The Role of AJs and VE-Cadherin in Vascular

Permeability

AJs, and the AJ component VE-cadherin in particular, play an

important role in the control of vascular permeability and integrity.

In vivo data using blocking antibodies to VE-cadherin show

profound alterations of lung and heart vascular permeability

accompanied by endothelial cell retraction and partial detach-

ment with exposure of the subendothelial matrix (for review see

Dejana et al., 2008). Stimuli such as high concentrations of hista-

mine, thrombin, or growth factors may increase endothelial cell

permeability through an effect on cell contractility mediated by

phosphorylation of myosin light chain and activation of p21-acti-

vated kinase (PAK) (Stockton et al., 2004). However, increased

permeability in vitro and in vivo could also be observed in the

presence of more subtle changes in AJ organization. Histamine,

tumor necrosis factor, platelet activating factor, and vascular

endothelial growth factor (VEGF) induce tyrosine phosphorylation

of VE-cadherin, b-catenin, and p120. This phosphorylation of

AJ proteins parallels increases in permeability in cell culture

systems (Dejana et al., 2008). Src is likely implicated in phosphor-

ylation of AJs as it is directly associated with the VE-cadherin/

catenin complex, and src gene inactivation or treatment with

inhibitors blocks VEGF-induced VE-cadherin phosphorylation

(Weis et al., 2004). VE-cadherin may also be phosphorylated

through inhibition of associated phosphatases. The phosphatase

VE-PTP is of particular interest as it is endothelial-specific and
Developmental Cell 16, February 17, 2009 ª2009 Elsevier Inc. 211
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Figure 2. Protein Complexes that
Associate with VE-Cadherin and Other
Cadherins and Contribute to Adherens
Junction Stability
VE-cadherin binds to PAR-3 through its PDZ
domain and PAR3 can associate with PAR6 (Vest-
weber, 2008); the small GTPase Rap-1 stabilizes
adherens junctions and is activated by increase
in cAMP through Epac. Rap1 can bind the Rac-
GEF Tiam (Michiels et al., 1995) which was found
to codistribute with VE-cadherin complex (Lamp-
ugnani et al., 2002); CCM1,CCM2, and CCM3
form a complex which may associate to cadherins
via b-catenin or Rap1 (Serebriiskii et al., 1997;
Glading et al., 2007; Voss et al., 2007). For
simplicity, other potential partners of the complex,
such as ICAP-1 or afadin/AF6, are not illustrated in
the figure. More details can be found in the text.
associates with VE-cadherin. Inactivation of the VE-PTP gene

leads to a phenotype comparable to that of VE-cadherin null

embryos. This suggests that vessels cannot form correctly if

VE-cadherin is constantly phosphorylated (Baumer et al., 2006).

Other phosphatases such as Dep-1, PTP-m, and SHP2 may

also associate with VE-cadherin and, directly or indirectly,

decrease phosphorylation and increase barrier function (Dejana

et al., 2008). There are also other kinases besides src that

may be associated with the VE-cadherin/catenin complex and

modulate permeability. This includes Csk, which binds to phos-

phorylated VE-cadherin and inhibits Src (Vestweber, 2008).

Permeability may also be regulated by VE-cadherin internaliza-

tion. VE-cadherin can be internalized in a clathrin-dependent

manner. Binding of p120 to VE-cadherin prevents internalization,

suggesting that p120 may act as a plasma membrane retention

signal. Therefore, any condition that reduces VE-cadherin affinity

for p120, such as tyrosine phosphorylation, may increase its

internalization. A recent report found that VEGF disrupts endo-

thelial barrier function by activating src, which in turn phosphory-

lates Vav2, a guanine exchange factor for Rac. Activated Rac

induces VE-cadherin phosphorylation in Ser665. This process

induces the recruitment of b-arrestin 2, which promotes clathrin

dependent VE-cadherin internalization. In this scenario, phos-

phorylation of VE-cadherin in Ser665 together with tyrosine

would be the crucial step for increase in permeability (Gavard

and Gutkind, 2006). Importantly, the same authors found that an-

giopoietin 1, which in many conditions reduces vascular perme-

ability, induces src trapping by mDia, reducing its activity at

AJs (Gavard et al., 2008).

Another pathway that may induce vascular permeability is

VE-cadherin cleavage. The VE-cadherin protein is particularly

susceptible to enzymatic proteolysis. Exposure to elastase,

Adam-10, and others induces digestion of VE-cadherin in

cultured cells (for review see Dejana et al., 2008). Leukocytes

and tumor cells can release high amounts of these enzymes,

promoting VE-cadherin cleavage and thus increasing cell extrav-

asation and vascular leakage. Permeability control may also be

achieved through up or downregulation of VE-cadherin expres-

sion. Analysis of the VE-cadherin promoter showed different

binding sites for several transcription factors known to act in
212 Developmental Cell 16, February 17, 2009 ª2009 Elsevier Inc.
endothelial cell differentiation. Among these TAL-1, Ets-1,

ERG, or hypoxia inducible factors were found to effectively

upregulate VE-cadherin (Birdsey et al., 2008; Deleuze et al.,

2007). Although VE-cadherin is present in high molecular number

on cultured endothelial cell membranes (more than 9 3 105 per

cell), its concentration may change in different types of vessels

in vivo and a modification in its expression may modify vascular

barrier function.

cAMP and Rap-1

It is known that cAMP-elevating drugs reduce permeability and

attenuate inflammatory edema. The intracellular mediators are

PKA and Epac/Rap1. PKA promotes barrier function in brain

endothelial cells through its activity on TJ and AJ proteins. In

recent years the small GTPase Rap1 has received specific atten-

tion, and the emerging picture is complex and intriguing (Kooistra

et al., 2007). Rap1 is a ubiquitous mediator that acts in a complex

signaling network to control several actin-regulated processes in

addition to the organization of cell-to-cell junctions. A coopera-

tive multifaceted relationship exists between VE-cadherin and

Rap1 in endothelial cells. Rap1 enhances the adhesive properties

of VE-cadherin (Kooistra et al., 2007). An Epac/Rap1-specific

c-AMP analog decreases monolayer permeability by increasing

VE cadherin adhesion (Fukuhara et al., 2005). On the other

hand, VE-cadherin is required for junctional recruitment of

MAGI-1, a scaffold for Rap1-activator PDZ-GEF (Sakurai et al.,

2006). Therefore Rap1 and VE-cadherin can reciprocally influ-

ence one another to modulate endothelial responses and barrier

function. Several other small GTPases are also able to modulate

AJ organization and endothelial permeability, as discussed in an

excellent and detailed review by Wojciak-Stothard and Ridley

(2002) on this subject. The picture that emerges from the many

different results published over the past few years suggests

that cadherin adhesive and signaling activities are controlled by

a complex machinery of intracellular partners (Figures 2 and 3).

Together, the components of this machinery form a dynamic

structure that can be modified and adapted according to the

functional circumstances of the cells. As discussed below, muta-

tions in many of the genes encoding the interacting components

of this complex can either directly lead to, or increase suscepti-

bility to, defects in vascular permeability and/or vascular integrity.
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Figure 3. Signaling Pathways Downstream of AJs and TJs
At AJs, VE cadherin-b catenin complex binds different intracellular partners such as the kinase Csk which is a Src inhibitor, VEGFR-2 which may be dephosphory-
lated by the phosphatase Dep-1, TIAM which induces Rac and PAK activation, and PI3-kinase which in turn activates Akt and limit cell apoptosis. When it is
stabilized in the cytosol, free b-catenin can translocate to the nucleus and modulate cell transcription. At TJs claudins can link to members of the ZO family which
can also act as transcriptional factors. Members of the JAM family can associate to different signaling proteins which include the PAR3/PAR6 aPKC polarity
complex, ZO1, AF6/afadin, or the phosphatase MUPP1. More details are found in the text and in Liebner et al., 2006, and Vestweber, 2008.
Endothelial Junctions and the Maintenance of Vascular
Integrity
There is a close relationship between the control of permeability

and vascular integrity. In many cases the opening and closure of

endothelial junctions is transient and permeability control is re-

established in a relatively short time. However, in some patholog-

ical conditions, junction dismantling may induce more dramatic

and irreversible changes in vascular integrity. One possible

reason for this is that endothelial junctions not only mediate

cell-to-cell adhesion, but can also transfer intracellular signals

that communicate cell position, limit growth and apoptosis, and

regulate vascular stability. Therefore, modifications of the molec-

ular architecture of junctions may have complex consequences

for vascular homeostasis (Dejana, 2004). Junctional complexes

trigger intracellular signals in endothelial cells in a variety of

different ways (Figure 3). They can do so directly by engaging

signaling proteins, or indirectly by limiting the nuclear transloca-

tion of proteins that modulate transcription. Examples of direct

signaling through PI3-kinase activation, mitogen-activated

protein kinase (MAPK), or small GTPases have been reported

for different cadherins (for review see Dejana, 2004). Cadherins

may also associate with growth factor receptors and modulate

their signaling properties. For instance, VE-cadherin can form

a multiprotein complex with VEGFR2 and limit its internalization

and proliferative signals (Lampugnani et al., 2006). VE-cadherin

association with the TGF-b receptor complex, however, induces

coupling of TGFb receptor II and receptor I (Alk 1 and Alk 5) and

increases TGFb signaling to inhibit cell growth and motility (Rudini

et al., 2008). In other cell types, N-cadherin has been shown to
bind to the FGF receptor and reduce its internalization, although

direct evidence that this also occurs in endothelial cells is still

lacking, and E-cadherin has been shown to interact with the

EGF receptor. Together these results suggest that cadherin

modulation of cellular responses to growth factors is a general

feature of these proteins (for review see Liebner et al., 2006).

As mentioned above, junctional proteins can also shuttle from

the membrane to the nucleus to influence transcription. b-cate-

nin is a well-studied example of this paradigm. b-catenin is

a crucial member of the canonical Wnt signaling pathway, where

it modulates the transcriptional activity of lymphoid enhancer

factor (Lef-1)/T cell factor (TCF) proteins. When b-catenin is

free and stabilized in the cytoplasm it translocates to the

nucleus, displaces the transcriptional repressors Groucho/TLE

from their binding to Lef-1/TCF, and activates target gene tran-

scription (Clevers, 2006). Similarly, the armadillo protein

p120ctn also translocates to the nucleus under certain conditions

to facilitate the release of the repressor Kaiso from Lef-1/TCF

and increase target gene transcription (Park et al., 2006). In

endothelial cells, b-catenin is mainly known as a structural

component of AJs, and very little information is available on its

function in signaling. Endothelial-specific deletion of the b-cate-

nin gene in mice causes an embryonic lethal phenotype due to

alterations in vascular and heart valve development (Liebner

et al., 2004). Recent evidence indicates that Wnt/b-catenin

signaling is responsible for endothelial cell expression of blood

brain barrier characteristics (Liebner et al., 2008). By analogy

to findings in other cell types, it seems likely that when cadherins

are downregulated, or when the binding of b-catenin to the
Developmental Cell 16, February 17, 2009 ª2009 Elsevier Inc. 213
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cadherin tail is decreased by phosphorylation, free b-catenin

protein will be able to translocate to the nucleus and modulate

endothelial cell transcription. This is supported by recent work

showing that in VE-cadherin null endothelial cells or in sparsely

plated endothelial cells in culture, b-catenin signaling at the

nucleus is increased and acts in concert with FOXO1 to modu-

late gene transcription (Taddei et al., 2008). ZO proteins associ-

ated with TJs also contain several nuclear localization and export

signals. In other cell types, ZO-1 and ZO-2 become concen-

trated in the nucleus when cells are cultured in sparse condi-

tions, i.e., they do not contact each other and junctions are not

organized, or when they are exposed to stress. ZO proteins

may associate with different transcription factors such as

ZONAB, which is also found at TJs. These interactions promote

cell proliferation which is conversely limited when ZO proteins

are entrapped at the junctions (Matter and Balda, 2003).

Overall, most of the data suggest that the direct or indirect

signals transferred by junctional structures mediate cell stability.

In the endothelium this may be translated into maintenance of

vascular integrity. These observations suggest that the resting

state of endothelial cells is an active rather than constitutive/

passive condition, and that it requires complex and sustained

signaling processes for its maintenance. In support of this idea,

recent work shows that continuous and physiological FGF

signaling is required to maintain the integrity of endothelial AJs.

When FGF signaling is blocked by a soluble receptor in vitro

and in vivo, endothelial cells retract and eventually detach from

the vessel wall leading to strong alterations in vascular integrity.

This effect is mediated by phosphorylation and internalization

of VE-cadherin, which cause dismantling of junctions and endo-

thelial damage (Murakami et al., 2008).

Recent reports identified other mechanisms of inhibition of

vascular permeability mediated by the junctional recruitment of

the angiopoietin receptor Tie2 (Saharinen et al., 2008; Fukuhara

et al., 2008). However, it is still unclear whether vascular stability

mediated by these mechanisms is mediated by junctional

proteins and/or VE-cadherin in particular.

Pathologies of Vessel Morphogenesis and Junctional
Assembly
Altered vascular integrity and its major complication, bleeding,

are hallmarks of vascular malformations in human patients.

Vascular malformations are localized defects associated with

abnormal angiogenesis. Most of these defects are sporadic,

but Mendelian inheritance occurs in some families. The recent

identification of genes involved in some of these Mendelian

conditions has revealed new factors playing essential and often

unsuspected roles in angiogenesis, vascular homeostasis, and

vascular integrity. The challenge now is to determine the in vivo

function of these new genes. In a step toward this goal, increased

understanding of the mechanisms involved in vascular morpho-

genesis and vascular integrity has provided essential clues to

help decipher the mechanisms of these conditions.

Vascular malformations can affect any part of the vascular

tree, including arteries, veins, capillaries, or a combination of

these segments (for review see Brouillard and Vikkula, 2007).

They may affect any organ, but the most common and patholog-

ically significant locations are the skin, the gastrointestinal tract,

and the brain. In addition to pain and major esthetic problems,
214 Developmental Cell 16, February 17, 2009 ª2009 Elsevier Inc.
they may threaten life due to bleeding. In the context of this

review, we will focus on vascular malformations of the brain

(VMB) which cause serious neurological disability or death in

a significant proportion of patients due to cerebral hemorrhage.

The two main classes of VMB are brain arterio-venous malfor-

mations (BAVM) and cerebral cavernous malformations (CCM).

BAVM are high flow malformations characterized by a complex

conglomeration of dilated arteries and veins that lacks a capillary

bed and results in arteriovenous shunting (Friedlander, 2007).

Both conditions are thought to arise during embryonic, fetal,

and/or postnatal stages. Most occurrences are sporadic, but

they can also occur in families segregating as autosomal domi-

nant conditions such as capillary malformation-arteriovenous

malformations (CM-AVM) and hereditary hemorrhagic telangiec-

tasia (HHT). The gene associated with CM-AVM encodes

RASA1/p120RasGAP, a Ras GTPase activating protein which

negatively regulates the Ras MAP kinase pathway (Revencu

et al., 2008). CM-AVM patients are heterozygous for loss-of-

function mutations in this gene. However, the localized and

multifocal nature of CM-AVM lesions suggests that a somatic

second hit of this gene may be necessary for their manifestation,

as shown in other vascular hereditary malformations (Limaye

et al., 2008). Recent data on the activation of p190RhoGAP by

RASA1 and the role of the p190RhoGAP and p120-catenin in

AJ assembly has provided some clues on the possible role of

RASA1 in cell-cell junction homeostasis (Wildenberg et al.,

2006). RASA1 has also been shown to bind to and activate

Akt. However, the exact mechanisms leading to CM-AVM mal-

formations are still currently unknown. BAVM also occur in

HHT. The two HHT genes identified so far, endoglin and

ACVRL1/ALK1, encode TGFb superfamily receptors mainly

expressed in endothelial cells and are associated to VE-cadherin

(see above) (Rudini et al., 2008). The important role played by

TGFb in vascular remodeling and vessel wall integrity through

its functions in endothelial cells and differentiation of vascular

smooth muscle cells has been well established (for review see

ten Dijke et al., 2008).

CCM are slow flow malformations characterized by densely

packed vascular sinusoids embedded in a collagen matrix

without intervening neural tissue (Figures 4A and 4B). These

clusters are lined by a thin endothelium and rare subendothelial

cells. Ultrastructural analysis shows structural defects, a paucity

of endothelial cell TJs, and an absence of astrocyte end feet

within the lesions. These data suggest that the leakiness of these

lesions and the heavy hemosiderin deposits underlying the

vessels might be caused by a blood brain barrier dysfunction

(Clatterbuck et al., 2001). CCM bleeding has been involved in

10% of young patients showing intracerebral hemorrhage and

recurrent bleeding is the major risk endured by patients affected

with a familial form of the disease (FCCM), which is characterized

by lesion multiplicity (Labauge et al., 2007). The three CCM

genes identified so far (KRIT1/CCM1, MGC4607/CCM2, and

PDCD10/CCM3) encode nonhomologous proteins whose role

in angiogenesis and vascular homeostasis was completely

unsuspected. All mutations of FCCM patients lead to a loss of

function. Biallelic loss-of-function mutations are most likely

required for CCM lesions to arise (Gault et al., 2005). Recent

data strongly suggest that CCM proteins are members of a large

complex involved in cell-cell junction homeostasis and
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cytoskeleton remodeling (Hilder et al., 2007). CCM1 and CCM3

interact with CCM2 (Figure 2). CCM2 is a scaffold protein that

binds to actin, the GTPase Rac, and the upstream kinases

MEKK3 and MKK3, and is involved in p38 MAP kinase-mediated

control of osmolarity stress (Uhlik et al., 2003). CCM1 interacts

with ICAP1, a modulator of integrin b1, and CCM3 binds to

various STK kinases and phosphatases (Zawistowski et al.,

2002; Goudreault et al., 2008). Recent data strongly suggest

that CCM1 is a specific Rap1 effector regulating endothelial

cell-cell junctions (Glading et al., 2007). The CCM1 FERM

domain is unmasked by the activated Rap1 and controls the

junctional localization of CCM1, which has been shown to

interact with b-catenin and AF6/afadin. Interestingly, ICAP1

and CCM2 are involved in Rho GTPase pathways, which in

turn are known to regulate the integrity of tight junctions. Alto-

gether these data strongly suggest that CCM proteins may be

involved in cell-cell junction integrity.

Animal Models of Vascular Malformation Disorders
Despite the identification of the affected genes in several

inherited vascular disorders, our understanding of the mecha-

nisms underlying vascular lesion formation in these diseases is

still very incomplete. Most of the human disorders are highly

variable in penetrance and onset, and the location and timing

Figure 4. CCM Lesions from a Human Patient and Abnormal Vessel
Remodeling in a Transgenic Mouse Embryo in which CCM2 Has
Been Ablated from Endothelial Cells
(A) Cerebral MRI showing multiple CCM lesions.
(B) Surgical view of a CCM lesion.
(C and D) Whole mount PECAM staining of control (C) and transgenic embryos
(D) at E10.5 showing abnormal vascular remodeling in the aorta, outflow tract,
and head vessels.
of lesion formation are unpredictable, making it impossible to

observe and study the earliest, proximal steps in disease mani-

festation. Animal models, in particular mice and zebrafish

(Figure 5A), have been critical for in vivo experimental analysis

of the molecular and cellular mechanisms underlying vascular

diseases, and have begun to yield new insights into their

etiology. We will briefly discuss, as examples, HHT and CCM

and some of the novel insights that have come from exploring

the in vivo roles of disease genes using animal models.

Animal Models of Hereditary Hemorrhagic

Telangiectasia

As discussed above, defects in the TGFb receptor superfamily

members Endoglin and ALK1 have been shown to be the causa-

tive lesions in HHT type 1 (HHT1) and HHT type 2 (HHT2), respec-

tively (Lebrin and Mummery, 2008). Murine models have been

developed for both HHT1 (Arthur et al., 2000; Bourdeau et al.,

1999) and HHT2 (Bourdeau et al., 1999; Seki et al., 2003; Urness

et al., 2000). Endoglin null embryos die at approximately E10.5

with vascular and cardiac defects (Arthur et al., 2000). Endothelial

cells are specified and the yolk sac vasculature develops into

a primitive vascular plexus, but it fails to remodel and mature

beyond this stage. Vascular channels throughout the animals

appear dilated, and the animals also develop extensive hemor-

rhaging indicative of vascular fragility. Heart defects are also

noted, with the atrioventricular canal endocardium failing to

undergo mesenchymal transformation and cushion-tissue

formation. Mice homozygous null for ALK1 also die by mid-gesta-

tion, with severe vascular malformations including fusion of major

arteries and veins (Seki et al., 2003; Urness et al., 2000) and

defects in placental vascular development (Hong et al., 2007).

As the human disorders are autosomal dominant conditions,

mice heterozygous for Endoglin or ALK1 null mutants have

been carefully examined for progressive signs of HHT-like

lesions. Although initial work suggested a very low penetrance

for lesion formation in heterozygous mice, it was found that the

incidence of lesion formation is highly dependent on genetic

background and/or the presence of additional genetic defects

(Arthur et al., 2000; Bourdeau et al., 1999; Marchuk et al.,

2003). Expression of ACVRL1 proteins harboring different muta-

tions found in human patients in either cell culture or in zebrafish

embryos confirmed that most of these mutants do not act in

a dominant-negative fashion, supporting the view that HHT is

a haploinsufficiency disorder that requires additional environ-

mental and/or genetic ‘‘triggers’’ to initiate lesion formation

(Baumer et al., 2006).

Some of the evidence obtained from murine studies has sug-

gested a role for ALK1/Endoglin signaling in arterial-venous

differentiation. In an initial study it was reported that ALK1 null

embryos develop large arterial-venous shunts, downregulate

the arterial marker ephrinB2, and display intravascular hemato-

poiesis in both veins and arteries instead of only embryonic

arteries (Urness et al., 2000). Vascular remodeling defects have

been noted in mice with defects in arterial-venous (A-V) differen-

tiation, including ephrinB2 or EphB4 (Adams et al., 1999; Gerety

and Anderson, 2002; Gerety et al., 1999; Wang et al., 1998),

Notch 1/4 (Krebs et al., 2000), Notch ligand Dll4 (Duarte et al.,

2004; Gale et al., 2004; Krebs et al., 2004), Notch effector Rbpj

and Mib, and Hey1/Hey2 double mutants (Fischer et al., 2004;

Kokubo et al., 2004; Koo et al., 2005; Krebs et al., 2004). This
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has led to the suggestion that ALK1 is required for A-V identity

and for developing distinct arterial and venous vascular beds.

However, vascular remodeling defects and a failure to properly

differentiate arteries and veins have been noted in a number of

different knockout models that do not directly affect arterial-

venous differentiation, and it is not always clear that A-V

morphology defects represent proximal effects of loss of the

targeted gene as opposed to secondary consequences. Brain

arterial venous malformations most similar to those found in

HHT have not been reported so far in human patients carrying

Notch receptor/ligand mutants. Furthermore, analysis of Endo-

glin null mice showed that, unlike ALK1 mutants, they do not

show profound vessel dilation or downregulate arterial ephrinB2

(Sorensen et al., 2003). Analysis of an ALK1 LacZ knockin mouse

also showed that this gene is expressed primarily in larger

arteries (Seki et al., 2003), suggesting it probably does not

have a direct functional role in venous vessels.

A variety of recent evidence has suggested that rather than

affecting A-V identity, the proximal role of ALK1 signaling might

be to regulate proliferation and the ‘‘quiescence state’’ of the

endothelium. In a zebrafish model for HHT2, the ‘‘Violet beaure-

garde’’ mutant (Figures 5B and 5C), affected vessels did not

display any apparent defect in differentiation but did contain

many more endothelial cells than normal, indicating that the

mutant caused an endothelial over proliferation (Park et al.,

2008; Roman et al., 2002). Other work, including a recent study

Figure 5. Zebrafish Models of Hereditary
Hemorrhagic Telangiectasia, HHT, and Cerebral
Cavernous Malfomations, CCM
(A) Blood vessels are readily visualized in living zebrafish
embryos and larvae, as shown in this confocal microan-
giographic image of the vasculature of a 3 day old zebra-
fish larva.
(B and C) Confocal microangiographic images of the
cranial vasculature of 3 day old wild-type (B) and violet
beauregarde (alk1/acvrl1) mutant animals. Mutants
display highly enlarged cranial vessels with increased
numbers of endothelial cells.
(D and E) Transmitted light images of 2 day old wild-type
(D) and CCM pathway gene knockdown (E) zebrafish.
Images are: (A) Lateral view, anterior to the left, from Isogai
et al., 2001; (B and C) Dorsal view of the head, anterior to
the left; (D and E) Lateral view of the head, anterior to the
left, adapted from Gore et al., 2008.

identifying a probable in vivo ligand for ALK1

(see below), has supported the idea that

signaling through this receptor regulates the

‘‘activation state’’ of the endothelium (Park

et al., 2008). It may be that the defects in arte-

rial-venous differentiation noted in some studies

could be a secondary consequence of a general

failure of ALK1-deficient endothelial cells to

cease proliferating and take on a quiescent

differentiated state.

As noted above, ALK1 and Endoglin are TGFb

superfamily receptors and a great deal of

interest has been focused on potential signaling

upstream and downstream from these genes.

Based on a variety of evidence it has been

proposed that TGFb can activate downstream

Smad signaling through both ALK1 and ALK5 TGFb type1 recep-

tors in endothelial cells, with opposing effects. TGFb/ALK5

signaling inhibits endothelial cell migration and proliferation,

while TGFb/ALK1 signaling promotes endothelial cell migration

and proliferation, with the balance between ALK1 and ALK5

signaling regulating the cellular response (Goumans et al.,

2002). However, more recent studies have cast doubt on both

the role of opposing signaling between ALK1 and ALK5 in vivo

and whether TGFb is the physiologically relevant ligand for

ALK1. Examination of mice with lacZ knocked into either the

ALK1 or ALK5 genes revealed that they are not expressed in

the same cells; ALK1 is expressed in endothelial cells, while

ALK5 is expressed in vascular smooth muscle cells (Seki et al.,

2006). It was assumed that TGFb activated downstream signaling

by binding to either ALK1 or ALK5 Type I receptors in combination

with the TGFb type 2 receptor (TFGbR2). However, when Alk1-cre

mice were used to perform cre-mediated restricted excision of

the ALK1, ALK5, or TGFbR2 genes, only deletion of ALK1

resulted in a vascular malformation defect (Park et al., 2008), sug-

gesting that ALK5 and TGFbR2 are not required for ALK1

signaling or involved in the pathology of HHT. Evidence from

a recent study also indicates that the likely physiological ligand

for ALK1 is BMP9, not TGFb, and that this ligand is a potent anti-

angiogenic factor (David et al., 2008). Interestingly, the results of

this paper also suggest that high levels of circulating BMP9 play

a role in maintaining adult blood vessel quiescence.
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Animal Models of Cerebral Cavernous Malformation

As described above, human familial CCM syndromes have been

linked to mutations at three loci: CCM1/Krit1, CCM2/Malcaver-

nin, and CCM3/PDCD10. A number of studies (such as Hilder

et al., 2007; Plummer et al., 2005; Zawistowski et al., 2005)

have demonstrated that the three CCM proteins physically

interact with one another and with a variety of additional protein

partners including the small ras-family GTPase Rap1 (CCM1/

Krit1 was originally cloned by virtue of its interaction with

Rap1/Krev1, hence its name ‘‘Krev interaction trapped 1,’’ or

Krit1; Serebriiskii et al., 1997). Expression studies performed

using in situ hybridization, immunohistochemistry, or analysis

of knockin alleles have shown that all three CCM genes are simi-

larly expressed in both neurons and blood vessels in the mouse

brain (Petit et al., 2006; Plummer et al., 2006; Tanriover et al.,

2008). CCM1 and CCM2 are also expressed in blood vessels

and selected neural tissues in the zebrafish (Gore et al., 2008;

Hogan et al., 2008; Mably et al., 2006). The strong expression

of the CCM genes in neural tissue and the neural involvement

in lesion formation in CCM patients has led to suggestions that

cavernous malformations may be the result of a primary defect

in surrounding neural cells rather than blood vessel endothelial

cells (Plummer et al., 2006). As discussed below, however,

recent animal studies suggest that despite their expression in

neurons it is the endothelial function of these genes that is critical

for maintaining vascular integrity.

CCM1/Krit1 knockout mice demonstrated that this gene is

required for proper vascular development (Whitehead et al.,

2004). Homozygous mutant embryos die in mid-gestation with

dilated, thin-walled cranial vessels and enlarged caudal dorsal

aorta with an increased number of endothelial cells. Downregu-

lation of arterial-specific gene expression is also observed. The

vascular defects emerge in the absence of obvious alterations

in neural morphology or neural marker expression, leading the

authors of the initial knockout study to suggest that the primary

defect is in endothelial rather than neural cells. Like HHT, CCM is

an autosomal dominant disorder, and virtually all mutants

discovered to date in human CCM patients have been clear

loss-of-function alleles. An initial screening of heterozygous

mice failed to detect cavernous malformations. To test the

hypothesis that the occurrence of CCM lesions might require

a second somatic hit, CCM1 heterozygous mice were bred

with p53�/� mice that show an increased rate of somatic muta-

tions. Vascular lesions were observed in the brains of 55% of

the double mutant animals (Plummer et al., 2004). However, no

somatic hit was detected within the CCM1 wild-type allele in

the double transgenic mutants, suggesting that the appearance

of vascular lesions might reflect a direct role of p53 deficiency in

promoting the genesis of vascular malformations. However,

a second hit in any of the two other CCM genes or interacting

genes cannot be excluded. The idea that otherwise phenotypi-

cally silent second site ‘‘hits’’ in interacting genes could be pre-

disposing to or initiating lesion formation in CCM has been

explored directly in more detail using the zebrafish (see below).

Fortuitously, a gene trap insertion was discovered in the

CCM2 gene (Plummer et al., 2006). Heterozygous gene trap

insertion mice develop cerebral vascular malformations,

although the penetrance is low, as in many murine models of

vascular malformation disorders. In heterozygotes, b-galactosi-
dase from the gene-trap allele is strongly expressed in neurons

and choroid plexus as well as larger vessels, but is not clearly

visualized in vascular endothelium of small vessels in the brain

(like CCM1 and CCM3; see above), leading the authors of this

study to propose that ‘‘cerebral cavernous malformations arise

as a result of defects in the neural parenchyma surrounding

the vascular endothelial cells in the brain.’’ However, in both ze-

brafish and mice, it appears that endothelial and not neural cell

alterations are responsible for CCM lesions.

Mutants in both CCM1 (‘‘santa’’ mutants) and CCM2 (‘‘valen-

tine’’ mutants) have been isolated in the zebrafish (Mably et al.,

2006). Both of these mutants were discovered based on their

enlarged heart cardiac phenotypes (enlarged, poorly functional

hearts are also noted in homozygous CCM1-deficient mice).

Like their mammalian counterparts, the zebrafish CCM genes

are also expressed in the vasculature, and several recent studies

have examined the functional requirement for CCM genes in that

context. Loss of CCM1 or CCM2 in fish leads to defects in the

vasculature in addition to the cardiac defects, with formation of

enlarged, thin-walled vessels (Gore et al., 2008; Hogan et al.,

2008). In one report, blastomere transplantation methods were

used to show that wild-type endothelial cells could adopt

a ‘‘wild-type’’ morphology when they integrated into vessels in

CCM1 mutant animals, suggesting that CCM1 is required cell

autonomously for regulation of endothelial cell shape (Hogan

et al., 2008). An endothelial cell-autonomous requirement for

CCM1 function has also been demonstrated in zebrafish by

using transgenic endothelial-specific expression of CCM1 to

‘‘rescue’’ cranial vascular hemorrhage caused by antisense mor-

pholino-mediated knockdown of endogenous CCM1 (Gore

et al., 2008). However, recent work in the mouse has provided

what is probably the most conclusive evidence to date that the

primary defects in CCM are endothelial-specific. Ubiquitous,

endothelial-, or neural-specific CCM2 knockout mice were

generated using cre-lox technology and examined for homozy-

gous phenotypes. Animals homozygous for a ubiquitous deletion

of CCM2 die during early embryogenesis, like CCM1 knockouts.

However, despite the high level of expression of this gene in the

neuroepithelium, targeting of CCM2 in neuroglial precursor cells

does not lead to cerebrovascular defects. By contrast, endothe-

lial-specific knockout of CCM2 severely affects angiogenesis

and leads to major heart, arterial, and venous morphogenesis

defects and embryonic lethality at mid-gestation (Figures 4C

and 4D). Thus, while further analysis will be required to verify

a specific functional requirement for the other CCM genes in

endothelium versus neuroepithelium, it appears that the prox-

imal defect in CCM is probably initiated within the endothelium

(Boulday et al., 2009).

The results of a recent study in the zebrafish have also

provided new insights into the etiology of CCM (Gore et al.,

2008). As noted above, the incidence of lesion formation is highly

variable within affected CCM families, and the factors that trigger

intracranial hemorrhage (ICH) in either inherited or sporadic

forms of the disease are not understood. Not all individuals

harboring defective CCM genes develop ICH, reflecting incom-

plete penetrance of these mutations and/or involvement of addi-

tional genetic modifiers predisposing to lesion formation (Lucas

et al., 2003). As also noted above, there is ample evidence that

CCM genes act together in common intracellular complexes
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and/or signaling pathways (Dupre et al., 2003; Hilder et al., 2007;

Plummer et al., 2005; Voss et al., 2007; Zawistowski et al., 2005),

suggesting that minor functional perturbations of different genes

in these complexes or pathways might act together to precipitate

ICH. However, demonstrating this sort of multigene association

is not possible in the available small human CCM pedigrees. By

injecting specialized morpholino antisense oligonucleotides into

zebrafish embryos, Gore et al. (2008) simultaneously inhibited

the expression of multiple CCM pathway genes in various

combinations. They showed that a subtle decrease in each of

these genes alone caused little or no effect independently, but

when combined resulted in very high frequencies of ICH (Figures

5D and 5E). Thus, small, individually silent defects in the CCM

pathway can strongly synergize to increase susceptibility to

ICH. These findings have important implications. Single hetero-

zygous mutations in CCM proteins may not be enough to induce

stroke, but may require accompanying subtle secondary muta-

tions to ‘‘trigger’’ lesion formation. Mutations in CCM pathway

effectors may contribute to the highly variable penetrance of

familial CCM disorders. Subtle genetic second hits in individuals

that are outwardly normal but ‘‘sensitized’’ by minor deficits in

CCM pathway genes could also lead to sporadic forms of

hemorrhagic stroke. Together, the mouse and zebrafish studies

discussed above illustrate the power of these animal models for

dissecting the in vivo functional roles of identified human

vascular malformation disease genes.

Concluding Remarks
Understanding the molecular basis for vascular malformation

disorders and the defects in vascular integrity that lead to hemor-

rhage and stroke requires a three-pronged approach. In vitro

studies are needed to study the basic cell biology of endothelial

junction formation, and probe the functional roles of genes impli-

cated in vascular pathobiology through in vivo studies in human

patients and animal models. Clinical studies are needed to iden-

tify the genetic causes of vascular disease in humans and

examine how vascular malformation lesions and endothelial

integrity defects develop in human patients. And finally, animal

models such as mice and zebrafish are a vital tool for testing

the in vivo functional roles of identified junction/vascular disease

genes, and to uncover additional interacting genes. It is impor-

tant to fully integrate together each of these approaches to

achieve a holistic understanding of the etiology of vascular mal-

formation/junctional integrity disorders and provide the greatest

opportunity for developing effective therapies to ameliorate

or prevent these conditions. In this review we have attempted

to illustrate how recent findings from each of these three

approaches can be integrated to provide progress toward this

goal.
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